**SPEC 83023** Stock #: TBA

# Triple Parallel 600 Volt USE-2 Underground Service Entrance



Image not to scale. See Table 1 for dimensions.

#### **CONSTRUCTION:**

- 1. **Conductor:** Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum
- 2. **Insulation:** Cross Linked Polyethylene (XLPE)
- 3. **Neutral:** Cross Linked Polyethylene (XLPE) with three Yellow Extruded Stripes (YES)

For information about our Cable-Rejuvenation Services please visit us at: <u>Cable-Rejuvenation Services</u> You can email us at: Cable-Rejuvenation Services

#### **APPLICATIONS AND FEATURES:**

Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum, insulated with cross-linked polyethylene. Neutrals are identified by three yellow extruded stripes. Cables with "YES" neutrals have sequential footage markers. Conductors are durably surface printed for identification. Two-phase conductors and one neutral conductor are triple paralleled. These cables are capable of operating continuously at the conductor temperature not in excess of 90°C for normal operation in wet and dry locations, 130°C for emergency overload, and 250°C for short circuit conditions.

#### SPECIFICATIONS:

- ASTM B231 Standard Specification for Concentric-Lay-Stranded Aluminum 1350 Conductors
- ASTM B609 Standard Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical **Purposes**
- ASTM B901 Standard Specification for Compressed Round Stranded Aluminum Conductors Using Single Input Wire Construction. (The number of strands for both phase and neutral may differ)
- UL 854 Service Entrance Cable
- ICEA S-105-692 Standard For 600 Volt Single Layer Thermoset Insulated Utility Underground Distribution Cables





Copyright © 2024 Southwire Company, LLC. All Rights Reserved





**SPEC 83023** Stock #: TBA

### **Table 1 – Weights and Measurements**

| Stock<br>Number | Code<br>Word | Phase<br>Cond.<br>Size | Phase<br>Strand | Dia. Over<br>Phase<br>Conductor | Phase Insul.<br>Thickness | Dia. Over<br>Phase<br>Insulation | Neutral<br>Cond.<br>Size | Neutral<br>Strand | Neutral<br>Insul.<br>Thickness | Dia. Over<br>Neutral<br>Insulation | Approx.<br>OD | Approx.<br>Weight |
|-----------------|--------------|------------------------|-----------------|---------------------------------|---------------------------|----------------------------------|--------------------------|-------------------|--------------------------------|------------------------------------|---------------|-------------------|
|                 |              | AWG/<br>Kcmil          | No.             | inch                            | mil                       | inch                             | AWG/<br>Kcmil            | No.               | mil                            | inch                               | inch          | lb/1000ft         |
| TBA             | Glassboro    | 4/0                    | 18              | 0.512                           | 80                        | 0.658                            | 4/0                      | 18                | 80                             | 0.658                              | 1.974         | 785               |

All dimensions are nominal and subject to normal manufacturing tolerances

## Table 2 – Electrical and Engineering Data

| Code<br>Word | Phase<br>Cond. Size | Min Bending<br>Radius | Max Pull<br>Tension | DC Resistance<br>@ 25°C | AC Resistance<br>@ 75°C | Inductive<br>Reactance @<br>60Hz | GMR   | Allowable<br>Ampacity in Duct<br>90°C | Allowable Ampacity<br>Directly Buried 90°C |
|--------------|---------------------|-----------------------|---------------------|-------------------------|-------------------------|----------------------------------|-------|---------------------------------------|--------------------------------------------|
|              | AWG/<br>Kcmil       | inch                  | lb                  | Ω/1000ft                | Ω/1000ft                | Ω/1000ft                         | ft    | Amp                                   | Amp                                        |
| Glassboro    | 4/0                 | 9.9                   | 3808                | 0.084                   | 0.100                   | 0.041                            | 0.016 | 240                                   | 315                                        |

#### Notes:

- 1. Inductive reactance assumes cables are cradled in conduit, and the neutral is carrying no current.
- 2. Triple parallel inductive reactance calculation assumes the phase conductors are adjacent to one another.
- 3. Conductors assumed to be reverse lay stranded, compressed construction.
- 4. Phase spacing assumes cables are touching.
- 5. Resistances shown are for the Phase conductors only.
- 6. Ampacity based on 90°C conductor temperature, 20°C ambient, RHO 90, 100% load factor.









<sup>1.</sup> The actual number of strands may differ for single input wire per ASTM B901