15kV CU 100% EPR (EAM) One-Third Neutral LLDPE Primary UD Single Conductor, 175 Mils Ethylene Propylene Rubber (EPR) / Ethylene Alkene Copolymer (EAM), 100% Insulation Level, One-third Concentric Neutral, Linear Low Density Polyethylene (LLDPE) Jacket. Silicone Free #### CONSTRUCTION: - 1. **Conductor:** Class B compressed stranded soft drawn bare copper per ASTM B3 and ASTM B8; (Conductor moisture block optional and tinned copper per ASTM B33 optional) - 2. **Conductor Shield:** Conventional Semi-conducting cross-linked copolymer. A conductor tape is used for cable size larger than or equal to 1500 Kcmil - 3. Insulation: 175 Mils Ethylene Propylene Rubber (EPR) / Ethylene Alkene Copolymer (EAM) 100% insulation level - 4. Insulation Shield: Strippable semi-conducting cross-linked copolymer - 5. **Concentric Neutral:** Helically applied soft drawn bare copper one-third concentric neutral - Overall Jacket: Linear Low Density Polyethylene (LLDPE) Jacket, Black (red extruded stripes optional); PowerGlide® LLDPE jacket optional #### **APPLICATIONS AND FEATURES:** Southwire's 15kV cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial, sunlight, and where superior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation. 140°C for emergency overload, and 250°C for short circuit conditions. Jacket types available that can be installed in conduit without the aid of lubrication. Rated for 1000 lbs./FT maximum sidewall pressure. ### **SPECIFICATIONS:** - ASTM B3 Standard Specification for Soft or Annealed Copper Wire - ASTM B8 Concentric-Lay-Stranded Copper Conductors - ASTM B33 Standard Specification for Tin-Coated Soft or Annealed Copper Wire - ICEA S-94-649 Standard for Concentric Neutral Cables Rated 5 46kV - AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV - Rural Utility Standard RUS 1728F-U1 or 1728.204 (Electric standards and specifications for materials and construction) - UL 1072 Listed as MV 90 When Specified - Optional CSA 68.5: -40°C and MV 90°C optional marking available upon request #### **SAMPLE PRINT LEGEND:** SOUTHWIRE HI-DRI(R) [CONDUCTOR SIZE] [AWG or KCMIL] CU 15000 VOLTS EPR INSULATION 175 MILS -- (NESC) -- SOUTHWIRE {MMM} {YYYY} NON-CONDUCTING JACKET # Table 1 – Weights and Measurements | Stoc
Numb | | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter
Over
Insulation
Shield | Concentric
Neutral | Neutral DC
Resistance
25°C | Jacket
Thickness | Approx.
OD | Approx.
Weight | Min
Bending
Radius | Max Pull
Tension* | |--------------|---------------|-------------------------------|--------------------------------|---------------------|--|-----------------------|----------------------------------|---------------------|---------------|-------------------|--------------------------|----------------------| | | AWG/
Kcmil | inch | inch | mil | inch | No. x AWG | Ω /1000ft | mil | inch | lb
/1000ft | inch | lb | | TBA | 1/0
(1) | 0.325 | 0.712 | 175 | 0.792 | 9x14 | 0.292 | 50 | 1.020 | 762 | 8.0 | 845 | All dimensions are nominal and subject to normal manufacturing tolerances # Table 2 – Electrical and Engineering Data | Cond.
Size | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance @
60Hz | Inductive
Reactance
@ 60Hz | Charging
Current | Dielectric
Loss | Zero
Sequence
Impedance* | Positive
Sequence
Impedance* | Short
Circuit
Current @
30 Cycle | Allowable
Ampacity in
Duct 90°C† | Allowable
Ampacity
Directly
Buried 90°C‡ | |---------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|---------------------|--------------------|--------------------------------|------------------------------------|---|--|---| | AWG/
Kcmil | Ω/1000ft | Ω/1000ft | MΩ*1000ft | Ω/1000ft | A/1000ft | W/1000ft | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1/0
(1) | 0.102 | 0.128 | 0.038 | 0.046 | 0.229 | 39.671 | 0.381+j0.137 | 0.129+j0.045 | 3038.5 | 200 | 250 | ^{*} Calculations are based on three cables triplexed / concentric shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter # **Table 3 – Weights and Measurements (Metric)** | Stock
Number | Cond.
Size | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter
Over
Insulation
Shield | Concentric
Neutral | Neutral DC
Resistance
25°C | Jacket
Thickness | Approx.
OD | Approx.
Weight | Min
Bending
Radius | Max Pull
Tension* | |-----------------|---------------|-------------------------------|--------------------------------|---------------------|--|-----------------------|----------------------------------|---------------------|---------------|-------------------|--------------------------|----------------------| | | AWG/
Kcmil | mm | mm | mm | mm | No. x AWG | Ω/km | mm | mm | kg/km | mm | newton | | TBA | 1/0
(1) | 8.25 | 18.08 | 4.44 | 20.12 | 9x14 | 0.96 | 1.27 | 25.91 | 1134 | 203.20 | 3760 | All dimensions are nominal and subject to normal manufacturing tolerances # Table 4 – Electrical and Engineering Data (Metric) | Cond.
Size | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance
@ 60Hz | Inductive
Reactance
@ 60Hz | Charging
Current | Dielectric
Loss | Zero
Sequence
Impedance* | Positive
Sequence
Impedance* | Short
Circuit
Current @
30 Cycle | Allowable
Ampacity in
Duct 90°C† | Allowable
Ampacity
Directly
Buried 90°C‡ | |---------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|---------------------|--------------------|--------------------------------|------------------------------------|---|--|---| | AWG/
Kcmil | Ω/km | Ω/km | MΩ*km | Ω/km | A/km | W/km | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1/0
(1) | 0.3346 | 0.42 | 0.0116 | 0.1509 | 0.751 | 130.1542 | 0.381+j0.137 | 0.129+j0.045 | 3038.5 | 200 | 250 | ^{*} Calculations are based on three cables triplexed / concentric shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter [‡] Ampacities are based on Figure 1 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth) [♦] Cable marked with this symbol is a standard stock item ^{*} Pulling tension based on pulling eye directly connected to conductor [^] Solid Black Jacket [†] Ampacities are based on Figure 7 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth) [‡] Ampacities are based on Figure 1 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth) [♦] Cable marked with this symbol is a standard stock item ^{*} Pulling tension based on pulling eye directly connected to conductor [^] Solid Black Jacket [†] Ampacities are based on Figure 7 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)