
28kV CU 133% EPR LCT LLDPE Primary UD

Single Conductor, 345 Mils Ethylene Propylene Rubber (EPR), 133% Insulation Level, Longitudinally Corrugated Tape Shield, Linear Low Density Polyethylene (LLDPE) Jacket. Silicone Free

CONSTRUCTION:

- 1. **Conductor:** Moisture blocked class B compressed stranded soft drawn bare copper per ASTM B3 and ASTM B8 (Conductor moisture block optional and tinned copper per ASTM B33 optional)
- 2. **Conductor Shield:** Conventional Semi-conducting cross-linked copolymer; Supersmooth conductor shield optional; A conductor tape is used for cable size larger than or equal to 1500 Kcmil
- 3. **Insulation:** 345 Mils Ethylene Propylene Rubber (EPR) 133% insulation level
- 4. Insulation Shield: Strippable semi-conducting cross-linked copolymer
- 5. Tape Shield: 10 mils Longitudinally Corrugated Tape Shield
- 6. **Overall Jacket:** Linear Low Density Polyethylene (LLDPE) Jacket, black with red extruded stripes; PowerGlide® LLDPE jacket optional

APPLICATIONS AND FEATURES:

Southwire's 28kV cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial, sunlight, and where superior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation. 140°C for emergency overload, and 250°C for short circuit conditions. Jacket types available that can be installed in conduit without the aid of lubrication. Rated for 1000 lbs./FT maximum sidewall pressure.

SPECIFICATIONS:

- ASTM B3 Standard Specification for Soft or Annealed Copper Wire
- ASTM B8 Concentric-Lay-Stranded Copper Conductors
- ASTM B33 Standard Specification for Tin-Coated Soft or Annealed Copper Wire
- ICEA S-97-682 Standard for Shielded Utility Cable Rated for 5 46kV
- AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV
- Rural Utility Standard RUS 1728F-U1 or 1728.204 (Electric standards and specifications for materials and construction)
- UL 1072 Listed as MV 90 When Specified
- Optional CSA 68.5: -40°C and MV 90°C optional marking available upon request

SAMPLE PRINT LEGEND:

SOUTHWIRE HI-DRI(R) [CONDUCTOR SIZE] [AWG or KCMIL] CU 28000 VOLTS EPR INSULATION 345 MILS -- (NESC) -- SOUTHWIRE {MMM} {YYYY} NON-CONDUCTING JACKET

SPEC 81236 Stock #: TBA

Table 1 – Weights and Measurements

Stock Number	Cond. Size	Diameter Over Conductor	Diameter Over Insulation	Insul. Thickness	Diameter Over Insulation Shield	Jacket Thickness	Approx. OD	Approx. Weight	Min Bending Radius	Max Pull Tension*
	AWG/ Kcmil	inch	inch	mil	inch	mil	inch	lb /1000ft	inch	lb
TBA	1000 (61)	1.117	1.862	345	1.922	110	2.208	4724	26.5	8000

All dimensions are nominal and subject to normal manufacturing tolerances

Table 2 – Electrical and Engineering Data

Cond. Size	DC Resistance @ 25°C	AC Resistance @ 90°C	Capacitive Reactance @ 60Hz	Inductive Reactance @ 60Hz	Charging Current	Dielectric Loss	Zero Sequence Impedance*	Positive Sequence Impedance*	Short Circuit Current @ 30 Cycle	Allowable Ampacity in Duct 90°C†	Allowable Ampacity Directly Buried 90°C‡
AWG/ Kcmil	Ω/1000ft	Ω/1000ft	MΩ*1000ft	Ω/1000ft	A/1000ft	W/1000ft	Ω/1000ft	Ω/1000ft	Amp	Amp	Amp
1000 (61)	0.0108	0.015	0.026	0.036	0.625	201.980	0.180+j0.060	0.017+j0.036	7045.4	670	785

^{*} Calculations are based on three cables triplexed / tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

Table 3 – Weights and Measurements (Metric)

Stock Number	Cond. Size	Diameter Over Conductor	Diameter Over Insulation	Insul. Thickness	Diameter Over Insulation Shield	Jacket Thickness	Approx. OD	Approx. Weight	Min Bending Radius	Max Pull Tension*
	AWG/ Kcmil	mm	mm	mm	mm	mm	mm	kg/km	mm	newton
TBA	1000 (61)	28.37	47.29	8.76	48.82	2.79	56.08	7030	673.10	35600

All dimensions are nominal and subject to normal manufacturing tolerances

Table 4 – Electrical and Engineering Data (Metric)

Cond. Size	DC Resistance @ 25°C	AC Resistance @ 90°C	Capacitive Reactance @ 60Hz	Inductive Reactance @ 60Hz	Charging Current	Dielectric Loss	Zero Sequence Impedance*	Positive Sequence Impedance*	Short Circuit Current @ 30 Cycle	Allowable Ampacity in Duct 90°C†	Allowable Ampacity Directly Buried 90°C‡
AWG/ Kcmil	Ω/km	Ω/km	MΩ*km	Ω/km	A/km	W/km	Ω/1000ft	Ω/1000ft	Amp	Amp	Amp
1000 (61)	0.0354	0.05	0.0079	0.1181	2.051	662.6640	0.180+j0.060	0.017+j0.036	7045.4	670	785

^{*} Calculations are based on three cables triplexed / tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

[♦] Cable marked with this symbol is a standard stock item

^{*} Pulling tension based on pulling eye directly connected to conductor

[†] Ampacities are based on Figure 7 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)

[‡] Ampacities are based on Figure 1 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)

[♦] Cable marked with this symbol is a standard stock item

^{*} Pulling tension based on pulling eye directly connected to conductor

[†] Ampacities are based on Figure 7 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)

[‡] Ampacities are based on Figure 1 of ICEA P-117-734 (Single circuit trefoil, 100% load factor, 90°C conductor temperature, earth RHO 90, 36" burial depth)