Last update on .

Beginning with the end in mind is not only one of the 7 habits of highly effective people, it’s also a great philosophy to have when working with variable frequency drive (VFD) cable! If you have variable frequency drives at your facility you probably have heard of variable frequency drive cable. VFD cable has been shown to improve system performance by reducing electromagnetic interference (EMI), minimizing ground currents, controlling common mode current (which if left uncontrolled can damage motor bearings) and more. You may know a lot or a little about this specially designed cable that runs from your drive’s inverter to the motor. A lot of companies make VFD cable and a lot of salespeople from these companies will tell you that you should be running this cable. They may be right, but that is only half the story. The other half of the story is if you don’t properly terminate this cable, you lose most of the benefits it can provide.

Download PDF copy

Last update on .

Southwire’s Variable Frequency Drive (VFD) Cable Gland provides the means to properly terminate a VFD cable’s overall shield. The gland can be used on Southwire’s copper tape shield VFD cables and copper braid/aluminum foil shield VFD cables. Drive manufacturers stress the importance of proper shield termination to help prevent premature motor failure due to bearing fluting as well as operational issues associated with communication and control equipment located in close proximity to uncontrolled common mode currents. The VFD EMC Cable Gland provides a low impedance path at high frequency for common mode current created by the drive to the inverter via the shield and minimizes potential problems. Proper termination requires cable termination at both the drive and the motor end of the cable. Southwire’s VFD Cable Gland may be used on both copper tape and copper braid shields. Each gland includes a properly sized lock nut. Consult installation instructions for further details. Southwire offers VFD Cable Termination kits (SPEC 85451) as another cable termination option. See pdf for more details.

Download PDF copy

Last update on .

In applications where multiple motors are each powered by a separate VFD, care must be taken regarding the selection of the inverter to motor cables. Cable selection is even more critical if the cables are to be run any distance together in a raceway. Single conductor cables, while commonly used for some drive applications, can cause issues in such an installation. In addition to safety issues (see Southwire application note number 2012, VFD Cables – A Safe Bet), electromagnetic coupling can cause issues with drive performance.

Download PDF copy

Last update on .

General
Tray cable, Type TC is an approved wiring method in the NEC found in article 336. It is an efficient method of installing feeders, branch circuits and control cable because multiple runs of tray cable can be installed in one cable support system (i.e. cable tray) rather than multiple conduit runs, which adds to labor and material cost.
Description
Tray cable is a factory assembly of two or more insulated conductors with or without an associated equipment ground conductor under a non-metallic jacket. For feeder and branch circuits, tray cable can be manufactured with any of the insulation types found in NEC 310.4 (A) or (B). Depending on the insulation used, tray cable will have either 600, 1000 or 2000 volt rating. Metallic shields are allowed over groups of conductors or under the outer jacket or both. Metallic sheaths or armor is not allowed under or over the non-metallic jacket, doing so would make the cable type MC cable.
Use/Locations
Type TC cable can be used for a variety of applications such as, power, lighting, control, signal circuits, class 1 circuits and non-power limited fire alarm circuits. Tray cable cannot be installed where it is subject to physical damage and must be installed in a cable tray with exceptions. Sections of the tray can have up to one foot breaks or separations without the need of adding protection to the cable in these areas.

Download PDF copy

Last update on .

Background:
Color codes are used to identify conductors for point-to-point wiring and for circuit diagrams. The Insulated Cable Engineers Association outlines the color code in Standard S-73-532 in Annex E. The Standard breaks down the color code into methods of circuit identification. The most common methods used are Method 1, 3, and 4. After the Method is selected then the assembly of conductors must follow a color sequence from the tables with Table 1 and 2 being the most common.
National Electrical Code (NEC)
The NEC specifies that conductor colored white be used only as grounded conductors and that conductors colored green or green/yellow be used only as grounding conductors and that neither white nor green be used in any manner on ungrounded conductors. Tables 2 provide color sequences that do not include white or green conductors. If grounded or grounding conductors, or both, are used in the cable, they shall be colored white or green respectively, and inserted as the second or third, or both, designated conductor in the first sequence of circuit identification only. Where these conductors are required, they shall be specified.
Methods of Circuit Identification:
Method 1 - Colored Compounds
This method uses base color of insulation and uses tracers when needed, in accordance with Table 1 or 2. Base colors may be obtained by suitable color coatings applied to the insulation or jacket surface or by colored insulation or jacket compound. Tracers shall be colored stripes or bands marked on the surface of the insulation or jacket in such a manner as to afford distinctive circuit coding throughout the length of each wire. Tracers may be continuous or broken lines, such as a series of dots or dashes, and shall be applied longitudinally, annularly, spirally, or in other distinctive patterns.

Download PDF copy

Last update on .

Introduction: One significant change to UL 44 (Standard for Safety for Thermoset-Insulated Wires and Cable) in the 2018 release is the addition of the 1000 Volt rating of US type designations. Now XHHW, in addition to having a 600 Volt rating, can be rated 1000 Volt. RHH and RHW cables, which had 600 V and 2000 V ratings, now can be rated 1000 Volts.

Download PDF copy

Last update on .

Purpose: Withstand testing can be performed on either new or aged cables. The test should only be done if there is concern that cable damage has occurred possibly during installation or the insulation has been compromised due to heat, water or chemicals. General Testing Information • The test can be conducted with AC or DC voltages. • AC Withstand Test for field acceptance is 80% of factory test voltage. See table below. • DC Withstand Test for field acceptance is three times greater than the AC Withstand Test. See table below.

Download PDF copy

Last update on .

The objective of this procedure is to provide a means of repairing gouges, tears or indents on cables that occasionally happen in the field. Thisprocedurecoversbothmediumvoltageandlowvoltage power cables and will restore the cable back to its original integrity. The purpose of the outer jacket on medium voltage cables and low voltage multi-conducor cables is to protect the underlying components from physical and environmental damage and serves no dielectric purpose. On low voltage single conductor cables, generally, the outer layer is the cables primary insulating layer. For medium voltage cables with damage beyond the outer jacket such as the copper tape shield is torn or on low voltage cables where the conductor is damaged, contact your Southwire Represen- tative. Cable jacket repairs should only be performed by qualified personnel.

Download PDF copy

Last update on .

Purpose: Insulation resistance testing is a non-destructive test procedure. The test measures the insulation resistance between the phases and/or between phase and ground. It is commonly used in the industry for acceptance testing prior to energizing the cable and for maintenance testing programs. General Testing Information • For single conductor non-shielded cable on a reel, insulation resistance testing cannot be performed due to the fact that low voltage single conductors do not have a grounding conductor, shield or ground plane. • For other cable on a reel, insulation resistance testing can be performed provided the sealing caps are removed. The procedure to test these cables is outlined below. • NOTE: It is important to remove sealing caps from both ends of the cable to be tested. Residue inside the sealing cap can be conductive and lead to false readings.

Download PDF copy

Last update on .

Did you know that if you run cables that connect your variable frequency drives (VFDs) to your motors you could have a significant safety risk in your plant or factory? Fear not, there is a simple solution to this potential problem. It’s a fact. Non-shielded cables emit noise. In many cases, this is not a significant prob- lem. Most of us have heard that 60 Hz hum that happens when a phone line is run too close to a standard 600 Volt power cable. It’s really nothing more than a nuisance with standard power. But the same physics behind that hum may be creating a safety issue in your facility. VFDs change standard 60 Hz power in to variable frequency power that allow us to ex- perience significant energy savings, better control of our equipment, and reduced main- tenance costs. However, like most things in life, there are trade-offs. The down-side of a drive system is that it generates lots of high frequency voltage components that can cause problems with motors, drives, and other plant equipment. These same high frequency waveform components can also cause safety issues. Let’s look at how.

Download PDF copy

Yearly archives